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The appearance of the source terms in modeling non-equilibrium flow problems containing
finite-rate chemistry or combustion poses additional numerical difficulties beyond that for
solving non-reacting flows. A well-balanced scheme, which can preserve certain non-trivial
steady state solutions exactly, may help minimize some of these difficulties. In this paper, a
simple one-dimensional non-equilibrium model with one temperature is considered. We
first describe a general strategy to design high-order well-balanced finite-difference
schemes and then study the well-balanced properties of the high-order finite-difference
weighted essentially non-oscillatory (WENO) scheme, modified balanced WENO schemes
and various total variation diminishing (TVD) schemes. The advantages of using a well-bal-
anced scheme in preserving steady states and in resolving small perturbations of such
states will be shown. Numerical examples containing both smooth and discontinuous solu-
tions are included to verify the improved accuracy, in addition to the well-balanced
behavior.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the modeling of unsteady reactive problems, the interaction of turbulence with finite-rate chemistry introduces a wide
range of space and time scales, leading to additional numerical difficulties. A main difficulty stems from the fact that most
numerical algorithms used in reacting flows were originally designed to solve non-reacting fluids. As a result, spatial stiffness
due to the reacting source terms and turbulence/chemistry interaction are major stumbling blocks to numerical algorithm
development. One of the important numerical issues is the improper numerical treatment of a system of highly coupled stiff
non-linear source terms, which will result in possible spurious steady state numerical solutions (see Lafon and Yee [14,15]).
It was also shown in Lafon and Yee [14,15] that various ways of discretizing the reaction term and initial data can affect the
stability of, and convergence to, the spurious numerical steady states and/or the exact steady states. Pointwise evaluation of
the source terms appears to be the least stable (see [2,6,14,15]).

A well-balanced scheme (for time-dependent PDEs), as coined by LeVeque [16], which can preserve certain nontrivial
steady state solutions exactly, may help minimize some of the spurious numerical behavior. Furthermore, well-balanced
schemes capture small perturbations of the steady state solutions with high accuracy, thereby making them well suited
for computations of turbulent fluctuations on a mainly steady flow field. While general schemes can only resolve perturba-
. All rights reserved.
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tions at the level of truncation error with the specific grid, well-balanced schemes can resolve much smaller perturbations,
usually at 1% or lower of the main steady state flow. Most work about well-balanced schemes developed in the literature is
for the shallow water equations (e.g. [5,8,9,11,13,19–21,23,28,35]). We follow the work by Xing and Shu in 2005 [26]. They
develop a well-balanced high-order finite-difference weighted essentially non-oscillatory (WENO) scheme for solving the
shallow water equations, which is non-oscillatory, well-balanced for still water, and genuinely high-order in smooth regions.
In [27], they generalize the high order well-balanced WENO scheme to solve a wider class of hyperbolic systems with sep-
arable source terms.

In this paper, we apply their approach to construct a high-order well-balanced WENO scheme for the equations of non-
equilibrium flow with reaction terms in one space dimension. Generalizations to multi-dimension can be done following the
procedure given in [26] for the shallow water equations. Work in this area is forthcoming.

The one-dimensional hyperbolic system of conservation laws with source terms (also called a balance law)
Ut þ FðU; xÞx ¼ SðU; xÞ; ð1Þ
is considered, where U is the solution vector, FðU; xÞ is the convective flux and SðU; xÞ is the source term. This balance law
admits steady state solutions in which the source term is exactly balanced by the flux gradient. The objective of well-bal-
anced schemes is to preserve exactly some of these steady state solutions. In non-equilibrium flow containing finite-rate
chemistry, the source term represents the production of species from chemical reactions. One important property of this
type of source term for non-equilibrium flow (which may make the work easier) is that x does not appear explicitly in
SðU; xÞ , i.e., SðU; xÞ � SðUÞ.

The well-balanced property of various popular linear and non-linear numerical schemes in the literature is studied in this
paper based on a simple one-dimensional model with one temperature and three species (O2;O and N2). This model is ob-
tained by reducing the model by Gnoffo et al. [4]. The different behaviors of those numerical schemes in preserving steady
states and in resolving small perturbations of such states will be shown. High-order well-balanced WENO schemes are also
designed and applied to the one-dimensional model. The procedure of designing well-balanced schemes presented here is
valid for any number of species, although the numerical simulations are only performed for the three species model.

We will show that for the stationary steady state solutions of the reactive flow, the well-balanced schemes will give ma-
chine round-off errors regardless of the mesh sizes, while the non well-balanced schemes give truncation errors consistent
with the formal order of accuracy for the schemes. Well-balanced schemes can resolve small perturbations of such steady
state solutions well with very coarse meshes, while the non well-balanced schemes would give spurious structures in the
numerical solutions, which will decrease and eventually disappear with a mesh refinement. Our work indicates the advan-
tage of well-balanced schemes: they can be used to resolve small perturbations of the steady state solutions, e.g., turbulent
fluctuations, using much coarser meshes than that for the non well-balanced schemes, thereby saving a lot of CPU time,
especially when the number of species increases.

Numerical tests also include high-temperature shock tube and nozzle flows. It will be shown that the well-balanced
schemes will not lose any accuracy or other good properties such as non-oscillatory shock-capturing for approximating solu-
tions away from the steady state.

2. Governing equations

Assuming no conduction or radiation, the considered non-equilibrium models are a system of hyperbolic conservation
laws with source terms, denoted by
Ut þ FðUÞx ¼ SðUÞ: ð2Þ
Here U; FðUÞ and SðUÞ are column vectors with m ¼ ns þ 2 components where ns is the number of species
U ¼ ðq1; . . . ;qns
;qv ;qe0ÞT ; ð3Þ

FðUÞ ¼ ðq1v; . . . ;qns
v;qv2 þ p;qve0 þ vpÞT ; ð4Þ

SðUÞ ¼ ðs1; . . . ; sns ;0;0ÞT ; ð5Þ
where qs is the density of species s;v is the velocity and e0 is the internal energy per unit mass of the mixture. The total
density is defined as q ¼

Pns
s¼1qs and the pressure p is given by
p ¼ RT
Xns

s¼1

qs

Ms
; ð6Þ
where R is the universal gas constant and Ms is the molar mass of species s. The temperature T can be found from the total energy
qe0 ¼
Xns

s¼1

qsei;sðTÞ þ
Xns

s¼1

qsh
0
s þ

1
2
qv2; ð7Þ
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where ei;s ¼ Cv ;sT is the internal energy with Cv ;s ¼ 3R=2Ms and 5R=2Ms for monoatomic species and diatomic species, respec-
tively, and the enthalpies h0

s are constants.
The source term SðUÞ describes the chemical reactions occurring in gas flows which result in changes in the amount of

mass of each chemical species. We assume there are J reactions of the form
m01;jX1 þ m02;jX2 þ . . .þ m0ns ;jXns � m001;jX1 þ m002;jX2 þ . . .þ mns ;jXns ; j ¼ 1; . . . ; J; ð8Þ
where m01;j and m001;j are, respectively the stoichiometric coefficients of the reactants and products of species i in the jth reac-
tion. For non-equilibrium chemistry, the rate of production of species i due to chemical reaction, may be written as
si ¼ Mi

XJ

j¼1

m00i;j � m0i;j
� �

kf ;j

Yns

s¼1

qs

Ms

� �m0
s;j

� kb;j

Yns

s¼1

qs

Ms

� �m00
s;j

" #
; i ¼ 1; . . . ;ns: ð9Þ
For each reaction j, the forward and backward reaction rates, kf ;j and kb;j are assumed to be known functions of the
temperature.

Let us denote the Jacobian A ¼ @F=@U with ða1; . . . ; amÞ being the eigenvalues of A,
ða1; . . . ; amÞ ¼ ðv ; . . . ; v; v þ a;v � aÞ; ð10Þ
where a is the so-called ‘‘frozen speed of sound”. Denote R as the matrix whose columns are eigenvectors of A (not to be
confused with the R in Eq. (6)). Let al

jþ1=2;Rjþ1=2 denote the quantities al and R evaluated at some symmetric average of Uj

and Ujþ1, such as Roe’s average [22]. Define
ajþ1=2 ¼ R�1
jþ1=2ðUjþ1 � UjÞ ð11Þ
as the difference of the local characteristic variables in the x direction.
In this paper, the considered schemes are the fifth-order finite-difference WENO schemes [10,24], second-order semi-im-

plicit predictor–corrector total variation diminishing (TVD) scheme (P–C TVD) [17,32], second-order symmetric TVD scheme
[29] and Harten and Yee TVD scheme [30,31] and second-order MUSCL scheme [30]. Except for the P–C TVD scheme, the
explicit TVD high-order Runge–Kutta method [25] as well as the pointwise implicit additive Runge–Kutta (ARK) method
[12] are used for time discretization (see Appendix A for more details).

3. Well-balanced WENO schemes and linear schemes

A well-balanced scheme refers to a scheme that preserves exactly specific steady state solutions of the governing
equations.

We will first consider the 1D scalar balance law
ut þ f ðu; xÞx ¼ sðu; xÞ; ð12Þ
i.e., the steady state solution u satisfying
f ðu; xÞx ¼ sðu; xÞ: ð13Þ
Here lowercase letters ‘‘f”, ‘‘u” and ‘‘s” are used to denote scalar quantities and scalar functions, to distinguish them from the
uppercase letters ‘‘F”, ‘‘U” and ‘‘S” for the system case.

A linear finite-difference operator D is defined to be one satisfying Dðaf1 þ bf2Þ ¼ aDðf1Þ þ bDðf2Þ for constants a,b and
arbitrary grid functions f1 and f2. A scheme for Eq. (12) is said to be a linear scheme if all the spatial derivatives are approx-
imated by linear finite-difference operators.

Xing and Shu [27] proved that under the following two assumptions regarding Eq. (12) and the steady state solution of Eq.
(13), linear schemes with certain restrictions are well-balanced schemes. Furthermore, high-order non-linear WENO
schemes can be adapted to become well-balanced schemes.

Assumption 1. The considered steady state preserving solution u of Eq. (13) satisfies
rðu; xÞ ¼ constant; ð14Þ
for a known function rðu; xÞ.

Assumption 2. The source term s(u,x) can be decomposed as
sðu; xÞ ¼
X

i

siðrðu; xÞÞt0iðxÞ; ð15Þ
for a finite number of functions si and ti. (Here ti is not to be confused with the time ‘‘t” indicated on all previous conser-
vation laws.)
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We remark that the non-equilibrium flow including nozzle flow studied later in this paper does satisfy these assumptions.
A linear scheme applied to Eq. (13) would have a truncation error
Dðf ðu; xÞÞ �
X

i

siðrðu; xÞÞDiðtiðxÞÞ; ð16Þ
where D and Di are linear finite-difference operators used to approximate the spatial derivatives. One restriction to the linear
schemes is needed:
Di ¼ D for all i ð17Þ
when applied to the steady state solution. For such linear schemes we have

Proposition 1. For the balance law Eq. (12) with source term Eq. (15), linear schemes with the restriction Eq. (17) for the steady
state solutions satisfying Eq. (14) are well-balanced schemes.

Proof. For the steady state solutions satisfying Eq. (14), the truncation error for such linear schemes with Eq. (17) reduces to
Dðf ðu; xÞÞ �
X

i

siðrðu; xÞÞDðtiðxÞÞ ¼ D f ðu; xÞ �
X

i

siðrðu; xÞÞtiðxÞ
 !

;

where the linearity of D and the fact that rðu; xÞ is constant for the steady state solution u are used. Note that for such steady
state solution u; f ðu; xÞ �

P
isiðrðu; xÞÞtiðxÞ is a constant, because
d
dx

f ðu; xÞ �
X

i

siðrðu; xÞÞtiðxÞ
 !

¼ f ðu; xÞx �
X

i

siðrðu; xÞÞt0iðxÞ ¼ f ðu; xÞx � sðu; xÞ ¼ 0:
Thus, the truncation error is zero for any consistent finite-difference operator D. Therefore, linear schemes with Eq. (17) pre-
serve these steady state solutions exactly. h

Now the high-order non-linear finite-difference WENO schemes are considered in which the non-linearity comes from
the non-linear weights and the smoothness indicators. We follow the procedures described in Xing and Shu [26,27] for
the shallow water equations. The description below is brief, for better understanding of notations and terminologies we refer
to [10,24]. First, for the situation without flux splitting (19), e.g., for the WENO-Roe scheme defined in [10], the WENO
approximation to fx can be written as
fxjx¼xj
�
Xr

k¼�r

ckfkþj ¼ Df ðf Þj;
where r ¼ 3 for the fifth-order WENO approximation and the coefficients ck depend non-linearly on the smoothness indica-
tors involving the grid function fj�r; . . . ; fjþr . The key idea now is to use the finite-difference operator Df , and apply it to
approximate t0iðxÞ in the source terms (see also [20,21]), i.e.,
t0iðxjÞ �
Xr

k¼�r

cktiðxkþjÞ ¼ Df ðtiðxÞÞj: ð18Þ
The finite-difference operator Df is obtained from the high-order WENO procedure. Even though its coefficients depend non-
linearly on f, when f is smooth, these coefficients are sufficiently close to those of the linear high-order scheme, so that Df

acting on any smooth function approximates the first derivative of that function to high-order. Clearly, the condition for the
proof of Proposition 1 is now satisfied and we conclude that the high-order finite-difference WENO scheme as stated above,
without the flux splitting, and with the special handling of the source terms described above, maintains exactly the steady
state.

Next, WENO schemes with a Lax–Friedrichs flux splitting, such as WENO-LF and WENO-LLF, are considered. The flux
f ðu; xÞ is written as a sum of fþðu; xÞ and f�ðu; xÞ, defined by
f�ðuÞ ¼ 1
2
ðf ðuÞ � auÞ; ð19Þ
where a is taken as a ¼ maxujf 0ðuÞj. The main obstacle to achieve a well-balanced scheme for this case is the appearance of
the artificial viscosity term �au, which leads to a non-zero truncation error at steady state since the solution u is not a poly-
nomial. In order to obtain a well-balanced scheme, the �au term in the Lax-Friedrichs flux splitting (19) is replaced by
�a0 sgn
@rðu; xÞ
@u

� �
rðu; xÞ; ð20Þ
where ‘‘sgn” is the sign function with values +1 or �1. Basically, the dissipation difference caused by (19), given by
aðuþ � u�Þ; ð21Þ
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where u� and uþ refer to the left-biased and right-biased approximations to the value of u at the interface where the numer-
ical flux is needed, is replaced by
a0ðrðuþ; xÞ � rðu�; xÞÞ; ð22Þ
in (20) if we assume the ‘‘sgn” term is +1. By the mean value theorem applied to (22), a0 @r
@u ðn; xÞ in (22), where n is between u�

and uþ, corresponds to the constant a in (21). Of course, we would need to assume that @rðu;xÞ
@u does not change sign within the

local region. We would suitably adjust the size of a0 in (22) by the size of @rðu;xÞ
@u (some local average of it), so that dissipation

effects of (21) and (22) are close. We refer to [27] for more details. Notice that now the artificial viscosity term �rðu; xÞ is
constant at the specific steady state by (14), resulting in a zero truncation error for its difference and hence well-
balancedness.

The framework described for the scalar case can be easily applied to systems (1). For a system with m equations, we
would have m relationships in the form of Eq. (14):
rlðU; xÞ ¼ constant; l ¼ 1; . . . ;m: ð23Þ
In Assumption 2, si could be arbitrary functions of rlðU; xÞ, and si and ti can be different for different components of the
source vector. The characteristic decomposition procedure for WENO schemes does not alter the argument presented for
the scalar case (see [26]). The modified WENO schemes through the procedure above will maintain exactly the steady state
and will be called ‘‘balanced WENO” schemes below.

However, the modification of the viscosity coefficient a in the Lax–Friedrichs building block in order to obtain well-bal-
ancedness for the steady state may adversely affect stability near strong shocks for solutions far away from the steady state,
if Eq. (20) is used to obtain the well-balanced WENO-LF scheme for the system case. Here an equilibrium limiter is intro-
duced, similar to the one used in [18], to determine whether the region is near or far away from the steady state. The
Lax–Friedrichs flux splitting (19) is changed to
f�ðuÞ ¼ 1
2

f ðuÞ � akuð Þ; ð24Þ
with
k :¼max min 1;
ðjr1ðUiþ1; xiþ1Þ � r1ðUi; xiÞj þ jr1ðUi�1; xi�1Þ � r1ðUi; xiÞjÞ2

jr1ðUiþ1; xiþ1Þ � r1ðUi; xiÞj2 þ jr1ðUi�1; xi�1Þ � r1ðUi; xiÞj2 þ e

 !
; . . . ;

 

min 1;
ðjrmðUiþ1; xiþ1Þ � rmðUi; xiÞj þ jrmðUi�1; xi�1Þ � rmðUi; xiÞjÞ2

jrmðUiþ1; xiþ1Þ � rmðUi; xiÞj2 þ jrmðUi�1; xi�1Þ � rmðUi; xiÞj2 þ e

 !!
; ð25Þ
where e is a small number to avoid zero in the denominator and we take it as 10�6 in the computation. Near the specific
steady state, the differences in ri shown in (25) are close to zero. k will be near zero when all these differences are small
compared with e. k is near one if the solution is far from the steady state, since the differences in ri shown in (25) are
now on the level of OðDxÞ and much larger than e, and then the scheme is the regular WENO-LF scheme. The limiter does
not affect the high-order accuracy of the scheme in smooth region for general solutions of Eq. (2). In the specific steady state,
since all the rl ðl ¼ 1; . . . ;mÞ are constants, k returns zero and then the scheme maintains the exact solutions for such steady
state. To avoid confusion with ‘‘balanced WENO” schemes mentioned above, the WENO-LF with the flux splitting (24) and
the equilibrium limiter (25) will be called ‘‘hybrid WENO-LF”.

Finally, the well-balanced properties of various TVD schemes mentioned in Section 2 will be investigated. The semi-im-
plicit Predictor–Corrector TVD (P–C TVD) scheme [17,32] for Eq. (2) has the form
1� 1
2

DtS0ðUn
j Þ

� �
DUð1Þj ¼ �

Dt
Dx

Fn
j � Fn

j�1

� �
þ DtSn

j ; ð26Þ

Uð1Þj ¼ DUð1Þj þ Un
j ; ð27Þ

1� 1
2

DtS0ðUn
j Þ

� �
DUð2Þj ¼ �

Dt
Dx

Fð1Þjþ1 � Fð1Þj

� �
þ DtSn

j ; ð28Þ

Uð2Þj ¼ DUð2Þj þ Uð1Þj ; ð29Þ

Unþ1
j ¼ Un

j þ
1
2

DUð1Þj þ DUð2Þj

� �
þ Rð2Þjþ1=2U

ð2Þ
jþ1=2 � Rð2Þj�1=2U

ð2Þ
j�1=2

h i
: ð30Þ
The third step Eq. (30) acts as a non-linear filter step [33]. The elements of the vectorUjþ1=2, denoted by /l
jþ1=2 with l ¼ 1; . . . m are
/l
jþ1=2 ¼

1
2

wðml
jþ1=2Þ � ðml

jþ1=2Þ
2

h i
al

jþ1=2 � bQ l
jþ1=2

� �
; ð31Þ
where
ml
jþ1=2 ¼

Dt
Dx

al
jþ1=2: ð32Þ
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The function wðzÞ is an entropy correction to jzj. One possible form is ([30])
wðzÞ ¼
jzj jzjP d1;

z2 þ d2
1

� 	
=2d1 jzj < d1;

(
ð33Þ
where d1 is the entropy fix parameter. See [34] for a discussion. bQ l
jþ1=2 is an unbiased limiter function which can be
bQ l

jþ1=2 ¼minmod al
j�1=2;a

l
jþ1=2

� �
þminmod al

jþ1=2;a
l
jþ3=2

� �
� al

jþ1=2; ð34Þ
with
minmodða; bÞ ¼ sgnðaÞ �maxf0;min½jaj; b sgnðaÞ�g: ð35Þ
In this study, only diffusive limiters are considered. If a ‘‘smooth” limiter is preferred, then the minmod function minmod
ða; bÞ is replaced by the following smooth function
gða; bÞ ¼ aðb2 þ d2Þ þ b a2 þ d2
� 	h i

=ða2 þ b2 þ 2d2Þ; ð36Þ
where d2 is a small parameter between 10�7 to 10�5. The predictor step Eq. (26) and the corrector step Eq. (28) are linear.
However, the last filter step is not linear. We will explore this further in the next section. Note that the accuracy of the
scheme (and the two considered TVD and MUSCL schemes) reflects the choice of the very diffusive limiter. Numerical accu-
racy can be improved with a less diffusive limiter.

The numerical flux bF jþ1=2 for the second-order symmetric TVD scheme [29] is described as
bF jþ1=2 ¼
1
2
ðFj þ Fjþ1 þ Rjþ1=2Ujþ1=2Þ; ð37Þ
where
/l
jþ1=2 ¼ �w al

jþ1=2

� �
al

jþ1=2 � bQ l
jþ1=2

� �
: ð38Þ
Pointwise evaluation to the source term is enough for the accuracy for the symmetric TVD scheme and also for the two TVD
schemes in the following. Similar to P–C TVD, the non-linearity of the TVD scheme comes from the bQ l

jþ1=2 part of the numer-
ical flux Eq. (38).

The second-order Harten–Yee scheme [30,31] has the same form as Eq. (37) with
/l
jþ1=2 ¼

1
2

w al
jþ1=2

� �
gl

j þ gl
jþ1

� �
� w al

jþ1=2 þ cl
jþ1=2

� �
al

jþ1=2; ð39Þ
where
cl
jþ1=2 ¼

1
2

w al
jþ1=2

� � gl
jþ1 � gl

j

� �
=al

jþ1=2 al
jþ1=2 – 0;

0 al
jþ1=2 ¼ 0:

8<: ð40Þ
Examples of the limiter function gl
j can be
gl
j ¼ minmod al

j�1=2;a
l
jþ1=2

� �
; ð41Þ
or the smooth Eq. (36).
Unlike P–C TVD and the TVD schemes, the second-order MUSCL scheme [30] is fully non-linear. The numerical flux for a

MUSCL approach is expressed as
bF jþ1=2 ¼
1
2

F UR
jþ1=2

� �
þ F UL

jþ1=2

� �
� bRjþ1=2

bUjþ1=2

� �
; ð42Þ
with
UR
jþ1=2 ¼ Ujþ1 �

1
2

Djþ1; ð43Þ
and
UL
jþ1=2 ¼ Uj þ

1
2

Dj: ð44Þ
The limiters can be
Dj ¼minmodðUjþ1 � Uj;Uj � Uj�1Þ; ð45Þ
or the smooth Eq. (36). We can see that UR
jþ1=2 and UL

jþ1=2 bring non-linearity into every term of the flux Eq. (42).
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4. Numerical study

This section presents several numerical examples of two types of flows with non-equilibrium chemistry, i.e., Euler flow
with reactions and nozzle flow. Three test examples will be performed for each flow type. The first example is to numerically
verify whether the considered schemes are well-balanced by time-marching on a nontrivial steady state. In this test, the
well-balanced schemes which preserve the steady state solutions exactly will give round-off numerical errors. Next, this
steady state is subject to small perturbations of different variables. From the numerical behavior of all the considered
schemes, we can observe the well-balanced schemes showing their advantage in resolving the perturbations while the
non well-balanced schemes will give spurious numerical truncation errors. The third example is a shock tube problem to
test the shock-capturing capability of the considered schemes. We want to demonstrate that well-balanced schemes will
not destroy the non-oscillatory shock resolution away from the steady state.

4.1. Three species model

In all test cases, a simple model for air involving 3 species, O2;O and N2 (q1 ¼ qO2
;q2 ¼ qO and q3 ¼ qN2

) is used. The mod-
el has reactions:
O2 þM�Oþ OþM; ð46Þ
where M is a catalytic particle (any of the species present).
From Eq. (9), the source term SðUÞ can be written as
SðUÞ ¼ ð2M1x;�M2x;0; 0;0Þ; ð47Þ
with
x ¼ kf ðTÞ
q2

M2
� kbðTÞ

q1

M1

� �2
 !

q1

M1
þ q2

M2
þ q3

M3

� �
: ð48Þ
The forward reaction rate is
kf ¼ CT�2e�E=T ; ð49Þ
where C ¼ 2:9� 1017 m3 mole�1 s�1 and E ¼ 59750 K (The unit ‘‘m” is short for meter, ‘‘s” is for second and ‘‘K” is for kelvin).
The backward reaction rate is
kb ¼ kf =keq; ð50Þ
with
keq ¼ expðb1 þ b2 log zþ b3zþ b4z2 þ b5z3Þ; z ¼ 10;000=T; ð51Þ
where the constants bk are found in [4].
The steady state is of course not unique. In this paper we consider the special steady states with zero velocity and pre-

served chemical equilibrium. Then the flux in Eq. (2) is
FðUÞ ¼

q1v
q2v
q3v

qv2 þ p
ðqe0 þ pÞv

0BBBBB@

1CCCCCA ¼
0
0
0
p
0

0BBBBB@

1CCCCCA:
Since the chemical equilibrium condition SðUÞ ¼ 0 implies FðUÞ is a constant, we deduce that the pressure p is a constant in
this case. Therefore, a set of conditions for such steady state is
v ¼ 0;
p ¼ constant;
SðUÞ ¼ 0:

8><>: ð52Þ
Thus we can choose
r ¼ SðUÞ ¼ constant; ð53Þ
which is of the form (23). Note that x does not appear explicitly in SðUÞ, which makes the procedure simpler because all the
t0iðxÞ ¼ 1 and the finite-difference operators Di mentioned in Eq. (16) are absent. Therefore, as described in Section 3, linear
schemes and WENO-Roe schemes applied to the specific steady state solution Eq. (52) for the problem Eq. (2) are well-bal-
anced and maintain the original high-order accuracy. WENO-LF, WENO-LLF schemes with suitable modification as described
in the previous section are also well-balanced and maintain the original high-order accuracy.
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4.1.1. Well-balanced test
The purpose of the first test problem is to numerically verify whether the considered schemes are well-balanced for the

special stationary case Eq. (52) with
Table 1
L1 relat

N

40
80
160

Table 2
L1 relat

N

Minmo
40
80
160

Smooth
40
80
160
qO ¼ 4� 10�5ð1þ 0:2 sinð5pxÞÞ kg=m3; p ¼ 105 N=m2; v ¼ 0 m=s; ð54Þ
with qO2
and qN2

obtained by the equilibrium state condition (The unit ‘‘kg” is for kilogram and ‘‘N” is for newton). We con-
sider the air which consists of 21% of oxygen and 79% of nitrogen. This can be expressed as
qO

2MO
þ

qO2

MO2

¼ 21
79

qN2

MN2

; ð55Þ
which holds for the equilibrium state. In the equilibrium state, since there is no reaction, the species also satisfy the source
term SðUÞ ¼ 0. This set of steady state solutions is of the form Eq. (52). Notice that the solutions are not constants or poly-
nomials, making well-balancedness (zero truncation errors for such solutions) non-trivial. Eq. (54) is chosen as the initial
condition which is also the exact steady state solution, and the results are obtained by time-accurate time-marching on
the steady state. The relative L1 error is measured to be the difference between the exact solution Eq. (54) and the numerical
solution divided by the L1 norm of the exact solution.

The error and accuracy at t ¼ 0:01 (about 20,000 time steps for N ¼ 160 grid points) are listed in Tables 1 and 2. It shows
that WENO-Roe, P–C TVD and TVD schemes are well-balanced schemes because they produce errors at the level of machine
round-off errors in double precision. However, WENO-LF and MUSCL schemes are not well-balanced. The hybrid WENO-LF
scheme as stated in Section 3 is also verified to be well-balanced. We remark that the superconvergence of the results for
WENO-LF and MUSCL is due to the simple form of the steady state solutions.

Numerically P–C TVD and TVD schemes have been shown to be well-balanced for the steady state solution Eq. (52). Even
though the non-linear term RU in the P–C TVD (Eq. (30)) and TVD schemes (Eqs. (37) and (42)) is not linear, we will explain
why this part will not destroy the well-balanced property in these schemes. Since they have similar formulas, we will use the
symmetric TVD scheme as the example.

We claim that the function U ¼ 0 for this particular steady state problem Eq. (52). This is due to the fact that v is equal to
zero for the steady state solution. Recalling the eigenvalue a in Eq. (10), it is easy to see that only the last two entries ansþ1 and
ansþ2 are non-zero. For the function w defined in Eq. (33), if the entropy parameter d1 is set to be zero, we will have wðalÞ ¼ jalj.
Therefore, /1; . . . ;/ns are always zeros. Note that for any d1 > 0, P–C TVD and TVD schemes are not well-balanced.

Next, let us consider the factor al
jþ1=2 � bQ l

jþ1=2 in Eq. (31) or Eq. (38), where al
jþ1=2 is given in Eq. (11).

The resulting equations are obtained directly from the system (see [7])
ansþk ¼ ðDp� aqDvÞ=2a2 k ¼ 1;2; ð56Þ
where a;v and the frozen speed of sound a are evaluated at the Roe average at jþ 1=2, and Dp ¼ pjþ1 � pj, etc. Since the pres-
sure p is constant and velocity v is zero for the steady state solution, ansþ1 and ansþ2 are exactly zeros.

Hence, the non-linear term RU is zero and then the P–C TVD and TVD schemes become linear schemes for the steady state
solution Eq. (52). By Proposition 1, they are well-balanced schemes towards the steady state solution (52).
ive errors for qO by WENO schemes with N uniform grid points.

Error Error Order Error

WENO-Roe WENO-LF Hybrid WENO-LF
7.18E�15 2.89E�05 – 6.95E�13
6.58E�15 2.83E�07 6.67 2.34E�13
8.81E�15 3.25E�09 6.45 1.50E�12

ive errors for qO by TVD schemes with minmod/smooth limiter with N uniform grid points, d1 ¼ 0.

Error Error Error Error Order

d limiter P–C TVD symmetric TVD Harten–Yee TVD MUSCL
1.23E�14 5.93E�17 5.93E�17 3.86E�05 –
1.10E�14 5.71E�17 9.95E�17 5.15E�06 3.25
1.14E�14 1.69E�17 1.93E�16 3.25E�07 3.98

limiter
6.21E�15 5.50E�17 7.29E�15 5.03E�04 –
7.38E�15 6.14E�17 7.00E�15 2.25E�05 4.48
9.26E�15 1.81E�15 9.66E�15 4.14E�07 5.76



Table 3
Well-balanced property for WENO and second-order TVD schemes for zero velocity steady states of reactive Euler flows.

WENO-Roe WENO-LF Hybrid WENO-LF P–C TVD Harten–Yee MUSCL

Well-balanced Yes No Yes Yes Yes No
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From both numerical tests and theoretical analysis, we can summarize the well-balanced properties of the considered
schemes for the zero velocity steady states Eq. (52) in Table 3.

4.1.2. Small perturbation
The following test problems will demonstrate the advantages of well-balanced schemes through the problem of a small

perturbation over a stationary state.
The same stationary state solution Eq. (54) is considered. First, a small perturbation � ¼ 10�10 � sinðpxÞ (about 0.001% of

the mean flow) is added to the density, i.e.,
Fig. 1.
dotted
WENO-
q0O ¼ qO þ �: ð57Þ
The other quantities are kept unperturbed. At t ¼ 0:1, the difference between the perturbed solutions of density qO and the
steady state solutions of density qO is plotted (‘‘D” denotes the ‘‘difference” in the figures). The reference results are com-
puted by WENO-Roe with 1200 points and are considered to be ‘‘exact”. To improve the viewing, a factor of 1010 is multiplied
to all the figures.

The density qO by WENO-Roe is depicted in the left subplot of Fig. 1. The advantage of the well-balanced property of
WENO-Roe is clearly demonstrated with only 100 points to resolve such small perturbation. Although the solution indicates
two small bumps in the density plot, these bumps disappear when the mesh is refined to 200 points.

Unlike the well-behaved WENO-Roe, the results by WENO-LF, which is not a well-balanced scheme, behave in a very
oscillatory fashion using 100 grid points (middle subplot of Fig. 1). This is due to the fact that the well-balanced schemes
can resolve the steady state solution exactly, hence they are able to resolve a very small perturbation. However, a scheme
that is not well-balanced can only resolve the solution when the mesh is refined enough such that the truncation error of
the scheme is much smaller than the perturbation. For example, when the mesh is refined to 300 points for WENO-LF (mid-
dle subplot of Fig. 1), the oscillations disappear and the solution is resolved. The right subplot of Fig. 1 shows the good behav-
ior of the hybrid WENO-LF scheme. It resolves the perturbation perfectly with only 100 points.

Next, the numerical results by P–C TVD, TVD and MUSCL schemes are discussed, respectively. As indicated in Section
4.1.1, P–C TVD and TVD schemes are well-balanced schemes for both the minmod limiter and the smooth limiter. The
numerical results of P–C TVD and TVD schemes with the smooth limiter show very good agreement with the reference solu-
tion (right subplots of Figs. 2–4), whereas the MUSCL scheme, which is not well-balanced, exhibits oscillatory behavior
(Fig. 5 right) for the same mesh N ¼ 300.

However, note that in the left subplots of Figs. 2–4, results for P–C TVD and TVD schemes with the minmod limiter exhibit
some oscillations. These oscillations do not disappear in the mesh refinement until the mesh is extremely fine. This might be
caused by the lack of smoothness of the minmod limiter, which is continuous but not differentiable. For the sake of this, only
the smooth limiter will be considered in the following test problems.

Next our schemes are tested on a perturbation of velocity and a perturbation of energy, i.e.
v 0 ¼ v þ �; ð58Þ
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LF 100 points: dash-dot). Reference: WENO-Roe 1200 points: solid.
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Fig. 2. Small perturbation of density results by P–C TVD: � ¼ 10�10 � sinðpxÞ; d1 ¼ 0. Left: with the minmod limiter; right: with the smooth limiter (P–C TVD
300 points: dash-dot; WENO-Roe 1200 points: solid).
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Fig. 3. Small perturbation of density results by symmetric TVD: � ¼ 10�10 � sinðpxÞ; d1 ¼ 0. Left: with the minmod limiter; right: with the smooth limiter
(symmetric TVD 300 points: dash-dot; WENO-Roe 1200 points: solid).
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Fig. 4. Small perturbation of density results by Harten–Yee TVD: � ¼ 10�10 � sinðpxÞ; d1 ¼ 0. Left: with the minmod limiter; right: with the smooth limiter
(Harten–Yee 300 points: dash-dot; WENO-Roe 1200 points: solid).
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qe00 ¼ qe0 þ �; ð59Þ
both with � ¼ 10�3 � sinðpxÞ. Similar to the density case, the difference of the perturbed solutions and the steady state solu-
tions are plotted. But for the velocity case, since the steady state solution is zero, the velocity plots are the perturbed solu-
tion. Fig. 6 shows the velocity plot under a small perturbation of velocity (58) by WENO-Roe, WENO-LF and hybrid WENO-LF,
respectively. The results by P–C TVD, Harten–Yee TVD and MUSCL are shown in Fig. 7. Figs. 8 and 9 show the energy plot
under a small perturbation of energy (59) by three WENO schemes and three second-order TVD schemes, respectively. Again,
the well-balanced schemes WENO-Roe (left subplots of Figs. 6 and 8), hybrid WENO-LF (right subplots of Figs. 6 and 8), P–C
TVD (left subplots of Figs. 7 and 9), Harten–Yee TVD (middle subplots of Figs. 7 and 9) all show very good agreements with
the reference solutions even in a coarse mesh. The results by regular WENO-LF (middle subplots of Figs. 6 and 8) have some
oscillations in the coarse mesh due to the truncation errors. The results by MUSCL scheme (right subplots of Figs. 7 and 9)



0 1
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0 1

Fig. 5. Small perturbation of density results by MUSCL scheme: � ¼ 10�10 � sinðpxÞ; d1 ¼ 0. Left: with the minmod limiter; right: with the smooth limiter
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have much bigger oscillations even on a mesh with 600 grid points. The non well-balanced WENO-LF behaves better than the
MUSCL scheme, due to the high-order convergence of the former.

Through the examples of perturbations of density, velocity and energy, we clearly demonstrate the advantages of using
well-balanced schemes in capturing the small perturbation of steady states.

Nearly well-balanced schemes. Recall in the Section 4.1.1, when the entropy fix parameter d1 is non-zero, the last filter step
causes trouble, thus P–C TVD and TVD schemes are not well-balanced schemes any more for the steady state solution (52).
However, note that the first linear steps of P–C TVD and TVD schemes are still well-balanced. For the sake of this, we call
them ‘‘nearly well-balanced” schemes, in contrast to the ‘‘non well-balanced” MUSCL scheme which is not well-balanced
everywhere. Here we will show the advantages of nearly well-balanced schemes through the small perturbation problems.

We perform the same perturbation tests here, but by the non-zero entropy fix parameter schemes. Fig. 10 shows the den-
sity plots at t ¼ 0:1 under a perturbation of density (57) by P–C TVD, Harten–Yee TVD and MUSCL schemes, respectively. Figs.
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Fig. 10. Non-zero entropy fix parameter results of density qO: perturbation of density � ¼ 10�10 � sinðpxÞ; d1 ¼ 0:2. Dash-dot: left: P–C TVD 600 points;
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11 and 12 show the velocity and energy plots under a perturbation of velocity (58) and energy (59), respectively. The analysis
in Section 4.1.1 indicates that non-zero d1 introduces truncation errors in the filter step, which makes P–C TVD and TVD
schemes not well-balanced any more. The smaller d1 is, the smaller truncation errors it will cause, thus the better perfor-
mance these schemes will have.

In Figs. 10 and 12, the results by P–C TVD and Harten–Yee TVD schemes have smooth fluctuations, which is due to the
truncation error by the entropy fix parameter d1. MUSCL does not show big difference between zero d1 results (right subplot
of Fig. 7) and non-zero d1 results (right subplot of Fig. 12) in the perturbation of energy problem (59), because the truncation
error caused by d1 is much smaller than the original truncation error. MUSCL scheme has error 10 times larger than P–C TVD
scheme and Harten–Yee TVD scheme, hence it needs many more points to converge. The nearly well-balanced P–C TVD
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Fig. 12. Non-zero entropy fix parameter results of energy: perturbation of energy � ¼ 10�3 � sinðpxÞ; d1 ¼ 0:2. Dash-dot: left: P–C TVD 600 points; middle:
Harten–Yee TVD 600 points; right: MUSCL scheme 600 points. Solid: WENO-Roe 1200 points.

Fig. 13.
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scheme and Harten–Yee TVD scheme still perform better than the non well-balanced MUSCL scheme. This can be seen more
clearly from a larger perturbation test, for example,
qe00 ¼ qe0 þ �; ð60Þ
with � ¼ sinðpxÞ. The results of energy difference are shown in Fig. 13. In this case, the perturbation is relatively large com-
pared to the truncation error caused by d1. Thus we can see that the nearly well-balanced P–C TVD scheme and Harten–Yee
TVD scheme are able to resolve this perturbation very well (left and middle subplots of Fig. 13), whereas the non well-bal-
anced MUSCL scheme cannot do it in the same mesh (right subplot of Fig. 13).

Unlike the density and the energy cases, in the perturbation of velocity problem (58), the non-zero d1 does not have any
influence on the velocities (Fig. 11). This is because the ðns þ 1Þth element of RU is always zero as long as the velocity is zero.
Non-zero entropy fix parameter results of energy: perturbation of energy�¼ sin ðpx Þ ; d

1¼ 0 : 2. Dash-dot: left: P–C TVD 300 points; middle: Harten–

Yee TVD 300 points; right: MUSCL scheme 300 points. Solid: WENO-Roe 1200 points.
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Thus, the velocity plots for P–C TVD scheme and Harten–Yee TVD scheme remain as good as the zero d1 case (left and middle
subplots of Fig. 7).

4.1.3. A shock tube problem
The third example consists of a shock tube where the high pressure, high-temperature on the left half plane and the low

pressure, low temperature on the right plane, both contain air, initially in chemical equilibrium. The conditions are:
Fig. 14.

Fig. 15.
solid).

Fig. 16
ðpL; TLÞ ¼ ð1:003� 105 N=m2;4000 KÞ; ðpR; TRÞ ¼ ð0:6� 105 N=m2;1800 KÞ;
with zero velocity everywhere and the densities satisfying Eq. (55). Our well-balanced schemes are balanced for the left and
right states individually, but not through the transition. The WENO-Roe, hybrid WENO-LF, Harten–Yee and MUSCL schemes
are tested. We want to demonstrate that the well-balanced (or nearly well-balanced) schemes not only behave nicely near
the steady state but also can keep good properties far away from steady state, such in non-oscillatory shock-capturing. The
Riemann problem: left: density; middle: velocity; right: pressure (WENO-Roe 300 points: dash line with symbols; WENO-LF 1200 points: solid).

Riemann problem: left: density; middle: velocity; right: pressure (hybrid WENO-LF 300 points: dash line with symbols; WENO-LF 1200 points:

. Riemann problem: left: density; middle: velocity; right: pressure (P–C TVD 300 points: dash line with symbols; WENO-LF 1200 points: solid).



Fig. 17. Riemann problem: left: density; middle: velocity; right: pressure (Harten–Yee TVD 300 points: dash line with symbols; WENO-LF 1200 points:
solid).

Fig. 18. Riemann problem: left: density; middle: velocity; right: pressure (MUSCL scheme 300 points: dash line with symbols; WENO-LF 1200 points:
solid).
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reference solution is taken to be regular WENO-LF with 1200 points. The results by WENO-Roe, hybrid WENO-LF, P–C TVD,
Harten–Yee and MUSCL schemes at t ¼ 0:001 are shown in Figs. 14–18, respectively. For each scheme, density, velocity and
pressure are plotted from left to right. The hybrid WENO-LF gives well resolved, non-oscillatory solutions using 300 uniform
cells. We can see clearly from these figures that the well-balanced schemes, i.e., WENO-Roe, hybrid WENO-LF, Harten–Yee,
have the same non-oscillatory shock-capturing capability as the other schemes.

4.2. Nozzle flow

In this section, the quasi-one-dimensional non-equilibrium nozzle flow with the reaction terms (see the equilibrium noz-
zle flow [3]) is considered. The governing equations for the non-equilibrium flow with three species
ðq1 ¼ O;q2 ¼ O2;q3 ¼ N2Þ through a duct of varying cross section can be written in conservation form as:
ðqiAÞt þ ðqivAÞx ¼ siA; i ¼ 1; . . . ;3;
ðqvAÞt þ ððqv2 þ pÞAÞx ¼ pA0ðxÞ;
ðqe0AÞt þ ððqe0 þ pÞvAÞx ¼ 0;

ð61Þ
where A ¼ AðxÞ denotes the area of the cross section and si is given by Eq. (47).

4.2.1. Well-balanced test
First the well-balanced properties of our schemes are tested for the same steady state (52), for which the cross section

area and the initial conditions are taken as
AðxÞ ¼ 2þ sinðpxÞ; 0 6 x 6 2; ð62Þ

vðx;0Þ ¼ 0 m=s; pðx;0Þ ¼ 105 N=m2; Tðx;0Þ ¼ 2000 K; ð63Þ
with periodic boundary conditions. The densities of each species are obtained by the equilibrium state condition SðUÞ ¼ 0
and Eq. (55).



Table 4
L1 relative errors of qO2

for nozzle flow by WENO schemes with N uniform grid points.

N Error Order Error Order Error

WENO-Roe WENO-LF Balanced WENO-LF
40 9.78E�06 – 1.81E�05 – 1.01E�14
80 3.08E�07 4.99 5.80E�07 4.96 1.59E�14
160 9.60E�09 5.00 1.81E�08 4.99 3.05E�14
320 2.99E�10 5.01 5.66E�10 5.00 4.04E�14

Table 5
L1 relative errors of qO2

for nozzle flow by TVD schemes with N uniform grid points.

N Error Order Error Order

Harten–Yee MUSCL
40 1.83E�03 – 6.64E�04 –
80 4.31E�04 2.08 2.47E�04 1.43
160 1.40E�04 1.62 6.90E�05 1.84
320 4.31E�05 1.70 1.88E�05 1.87
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The balanced WENO-LF scheme (20) is considered in this section. We take
riðU; xÞ ¼ qi i ¼ 1; . . . ;3;
r4ðU; xÞ ¼ v ;
r5ðU; xÞ ¼ p;

8><>: ð64Þ
which achieve constant values for the steady state (63) and thus satisfy the Assumption 1 of the well-balanced condition.
Note that an extra source term pA0ðxÞ in addition to the chemical reaction terms appears in Eq. (61). As stated in Section 3,

this term needs special treatment in order to get the well-balanced WENO schemes. First, pA0ðxÞ is written in the form of (15)
with sðrðu; xÞÞ ¼ p and tðxÞ ¼ AðxÞ. Then, it is approximated by the same finite-difference operator as that for the flux, i.e., Eq.
(18).

Table 4 lists the errors and accuracies of the regular WENO schemes and balanced WENO-LF scheme at t ¼ 0:01 (about
3000 time steps for N ¼ 320 points). As before, the exact non-trivial steady state solution is known and the relative error is
measured between the exact and numerical solutions and then divided by the L1 norm of the exact solution. As shown in
Table 4, none of the regular WENO schemes are well-balanced if just pointwise evaluation is used to the source term. Notice
that it is different from the problem in Section 4.1.1, when there is no spatial derivative involved in the source term and the
WENO-Roe scheme is well-balanced. We see a clean fifth-order accuracy for the regular WENO schemes. The balanced
WENO-LF scheme (20) with special treatment to the source term (18) gives errors at the level of machine round-off errors
for double precision, thus it maintains the steady state solution (63) exactly.

Table 5 lists the errors and accuracies of Harten–Yee TVD scheme and MUSCL TVD scheme. Harten–Yee TVD scheme ap-
pears to be not well-balanced in this case. Recall the analysis in Section 4.1.1,
ansþk ¼ ðDðAðxÞpÞ � aAðxÞqDvÞ=2a2 k ¼ 1;2; ð65Þ
for the nozzle flow problem Eq. (61). Thus ansþ1 and ansþ2 are no longer zeros. Both Harten–Yee TVD scheme and MUSCL TVD
scheme show a second-order accuracy for the well-balanced test.

4.2.2. Small perturbation
The following test case is chosen to demonstrate the capability of the proposed scheme for computations on the pertur-

bation of the steady state solution (63), which cannot be captured well by a non well-balanced scheme.
A perturbation of density qO2

is considered, i.e.,
q0O2
¼ qO2

þ �; ð66Þ
with � ¼ 10�5 � sinðpxÞ (about 0.1% of the mean flow). The plot of density qO2
at the time t ¼ 0:05 is shown in Fig. 19. The

regular WENO-LF scheme with N ¼ 1200 points is used as a reference solution. The balanced WENO-LF can capture the per-
turbation very well in a mesh size of only 60 points. However, neither Harten–Yee nor MUSCL scheme can do that in a coarse
mesh. Similarly, we perturb the velocity
v 0 ¼ v þ �; ð67Þ
with � ¼ 0:5� sinðpxÞ and the pressure
p0 ¼ pþ �; ð68Þ
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Fig. 19. Small density perturbation of the nozzle flow.
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Fig. 20. Small velocity perturbation of the nozzle flow.
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with � ¼ 10� sinðpxÞ separately. The well-balanced WENO-LF scheme again presents good resolution of small perturbations
in the plots of velocity (Fig. 20) and pressure (Fig. 21). However, the non well-balanced schemes show spurious oscillations
and need more points to resolve the solution.

4.2.3. A shock problem
Proposed by Anderson in [1], it is concerned with a convergent–divergent nozzle flow with a parabolic area distribution,

which is given by
AðxÞ ¼ 1þ 2:2ðx� 1:5Þ2; 0 6 x 6 3: ð69Þ
The initial conditions are taken as the equilibrium state of
vðx;0Þ ¼ 0 m=s; pðx;0Þ ¼ 105 N=m2; Tðx;0Þ ¼ 2000 K:
The boundary conditions are taken as one bar of pressure at the left, 0.6784 bar of pressure at the right, and 2000 K of tem-
perature at both ends. The boundary conditions for the density of each species are obtained from the equilibrium conditions
at the boundaries. The flow at boundaries are subsonic for both inflow and outflow. A shock is established inside the pipe.
The computation is performed using N ¼ 200 points to t ¼ 0:1. The pressure p and velocity v are plotted.
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Fig. 21. Small pressure perturbation of the nozzle flow.
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Fig. 22. Nozzle flow: (a) left: pressure; (b) right: velocity (balanced WENO-LF 200 points: dash line with symbols; WENO-LF 1200 points: solid).
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Fig. 23. Nozzle flow: (a) left: pressure; (b) right: velocity (Harten–Yee scheme 200 points: dash line with symbols; WENO-LF 1200 points: solid).
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The results by balanced WENO-LF scheme are shown in Fig. 22. The numerical resolution is very good without oscilla-
tions, verifying the essentially non-oscillatory property of the balanced WENO-LF scheme. For comparison, the results by
Harten–Yee TVD and MUSCL are also presented in Figs. 23 and 24, respectively.
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Fig. 24. Nozzle flow: (a) left: pressure; (b) right: velocity (MUSCL scheme 200 points: dash line with symbols; WENO-LF 1200 points: solid).

6700 W. Wang et al. / Journal of Computational Physics 228 (2009) 6682–6702
5. Concluding remarks

The current results serve as a preliminary study on well-balanced schemes for non-equilibrium flow with source terms.
The well-balanced WENO schemes are constructed for the non-equilibrium flow. Numerical examples are given to demon-
strate the well-balanced property, accuracy, good capturing of the small perturbation to the steady state solutions, and the
non-oscillatory shock resolution of the proposed numerical method. Future research will apply the same approach to analyze
the well-balanced properties for the model with larger number of species, and for multi-dimensional flows. A more general
type of steady state problem with non-zero velocity will also be considered. In this case, the source terms are balanced by the
flux gradients. Special attention will be paid to general reactive flows for which perturbation from equilibrium states could
be small in some parts of the domain and large in other parts.
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Appendix A. Additive Runge–Kutta scheme

The implicit time method we are interested in is Additive Runge–Kutta Scheme (ARK) introduced by Kennedy and Car-
penter [12].

Rewrite Eq. (2) as
Table 6
The coe

a½N�ij
i ¼ 1

i ¼ 2

i ¼ 3

a½S�ij
i ¼ 1

i ¼ 2

i ¼ 3

b½N�j

b½S�j

cj
Ut ¼ FNðt;UðtÞÞ þ FSðt;UðtÞÞ;
Uð0Þ ¼ U0;



ð70Þ
where FN denotes the non-stiff term and FS denotes the stiff term.
fficients for ARK3.

j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3

1767732205903
2027836641118

5535828885825
10492691773637

788022342437
10882634858940

6485989280629
16251701735622 � 4246266847089

9704473918619
10755448449292
10357097424841

1767732205903
4055673282236

1767732205903
4055673282236

2746238789719
10658868560708 � 640167445237

6845629431997
1767732205903
4055673282236

1471266399579
7840856788654 � 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 � 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

1471266399579
7840856788654 � 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

0 1767732205903
2027836641118 0.6 1



Table 7
cfl Numbers based on numerical test.

N WENO 2nd order TVD schemes

RK3 ARK3 RK2 IE2

40 0.002 0.3 0.002 0.3
80 0.004 0.4 0.004 0.4
100 0.004 0.5 0.005 0.4
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The ARK scheme to Eq. (70) has the following form
UðiÞ ¼ Un þ Dt
Xi�1

j¼0

a½N�ij FNðtn þ cjDt;UðjÞÞ þ Dt
Xi

j¼0

a½S�ij FSðtn þ cjDt;UðjÞÞ; ð71Þ

Unþ1 ¼ Un þ Dt
Xs

j¼0

b½N�j FNðtn þ cjDt;UðjÞÞ þ Dt
Xs

j¼0

b½S�j FSðtn þ cjDt;UðjÞÞ; ð72Þ
where Uð0Þ ¼ Un and UðiÞ approximates Uðtn þ ciDtÞ; i ¼ 1; . . . ; s. The non-stiff and stiff terms are integrated by their own
ðsþ 1Þ-stage Runge–Kutta methods, respectively.

The coefficients a½N�ij ; a
½S�
ij ; b

½N�
j ; b½S�j ; cj are constrained by order of accuracy and stability considerations. A third-order ARK

method are considered in the computation.
The coefficients for the 3rd order ARK method (ARK3) we use are listed in Table 6. For more details, we refer the readers to

[12].
For the second-order schemes such as Harten–Yee and MUSCL, we use a simple second-order implicit–explicit Runge–

Kutta scheme (IE2) for the time discretization, which has the form
Uð1Þ ¼ Un þ DtFNðtn;UnÞ þ DtFSðtn;UnÞ; ð73Þ

Unþ1 ¼ ððUð1Þ þ UnÞ þ DtFNðtnþ1;Uð1ÞÞ þ DtFSðtnþ1;Unþ1ÞÞ=2: ð74Þ
Remark 1. In the steady state or close to steady state problems, the source term is close to zero and thus not stiff. Both an
explicit and an implicit time methods can be used. However, away from the steady state, such as the shock problem in 4.1.3,
using an implicit time method allows a large cfl number and thus saves computational cost. In Table 7, we list the maximum
cfl numbers allowed for WENO scheme and second-order TVD schemes (Harten–Yee and MUSCL) with different time
discretizations mentioned in Appendix A. Implicit methods show big advantage of saving computational cost especially in
coarse meshes. When the mesh is refined, the source term becomes less stiff.
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